## Integration

(National Center for **Integrative** Biomedical Informatics)

- Many different sources of biomedical data
  - Lab experiments
  - Published literature
  - Public (and private/commercial) databases
- Many different tools to manipulate biomedical data



# Software Integration

- A software resources repository is in place
  - simple web form for creators to register new software.
- Work with cross-NCBC group (SDIWG) to enhance functionality.
- Modularize software and string it into a workflow
  - Initial examples in use
  - More comprehensive vision
- Understand constraints on workflows to suggest legal compositions.
  - Aerospace Corporation



# Data Integration

- Ontology mapping
  - FAM to MESH
  - GO to MESH
  - Standardization, through cross-NCBC effort.
- Database integration
  - MBI
  - MiMI



### Motivation

- Copious amounts of protein data exist online
- Some of it is repeated across sources, some of it is contradictory between sources
- Experiments used to furnish data have varying levels of false positives and negatives
- Researchers must get pieces from disparate sources and piece them together manually, making judgments about the quality of each source as they work.
  - Users often require context for data that they see, e.g.
    - type of experiment used,
    - the organism, the tissue, etc.
  - Deep integration provides an opportunity to obtain and represent such relevant context, even if this requires consulting additional data sources.
- One possible solution is: MiMI



### MiMI Data Sources, Deep Data Integration and Access



#### **Deep Integration Techniques**

#### **Deep Integration Techniques:**

- Preserves provenance and conflicts
- Uniquely identify Proteins across multiple sources
- Integrates knowledge bases







MiMI is accessible to both expert and novice users by providing:

- Intelligent search & form-based queries
- XQuery



### What is MiMI?

- Comprehensive database of molecular interactions.
- Merges data into unique objects
  - source data: BIND, DIP, GRID, IntAct, HPRD, the Center for Cancer Systems Biology at Harvard, the Max Delbrueck Center, and Reactome
  - Auxilliary data: InterPro, IPI, GO, OrganelleDB, Pfam, OrthoMCL, ProtoNet, miBLAST, SwissProt.



### MiMI cont.

- Merged information generates:
  - 258,953 molecules
  - 408,980 interactions
  - 10,953 complexes
  - 8,589 pathways.
- Adopts XML technology for easy transformation between data sources; employs the native XML database TIMBER for efficient and effective retrieval



# Research and Techniques in MiMI

- Timber (using TAX) http://blahblah
- Efficient XQuery parser
- Open Source Standards Based Software
- Deep integration
- Provenance Prototype
- Multiple querying options



# Deep Integration

- Deep Integration means the original source data has been transformed, and is not directly available.
- Address, by maintaining Provenance
- Track how each piece of data is obtained.
  - Provides credit to data provider
  - Enhances user confidence in data.
  - Facilitates resolution of disagreement/error.
- Research on efficient storage of provenance.
- Allows scientists to query data based on provenance

# ERG (Prostate)





### ERG Slide 2





# HNF4A (Diabetes)

| Organism ID            | <u>9606;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Other Names            | G3PD; GAPD; MGC88685; 3" end; g3p1_human; Glyceraldehyde-3-phosphate dehydrogenase, muscle; Glyceraldehyde 3 phosphate dehydrogenase; protein; 1.2.1.12;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| External<br>References | HPRD 00713 IntAct EBI-709590 SwissProt P00354 LocusLink 2597 GI 7669492 RefSeq NP 002037 NP 002037.2 OMIM 138400 Molecule ID 15010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Description            | glyceraldehyde-3-phosphate dehydrogenase [BLAST Evalue to experimental molecule = 1.00e-300]; Glyceraldehyde-3-phosphate dehydrogenase catalyzes a important energy-yielding step in carbohydrate metabolism, the reversible oxidative phosphorylation of glyceraldehyde-3-phosphate in the presence of inorganic phosphate and nicotinamide adenine dinucleotide (NAD). The enzyme exists as a tetramer of identical chains. A GAPD pseudogene has been mapped to Xp21-p11 and 15 GAPD-like loci have been identified. [BLAST Evalue to experimental molecule = 1.59e-172]; glyceraldehyde-3-phosphate dehydrogenase [BLAST Evalue to experimental molecule = 1.00e-254]; glyceraldehyde-3-phosphate dehydrogenase [BLAST Evalue to experimental molecule = 1.59e-172]; glyceraldehyde-3-phosphate dehydrogenase; Glyceraldehyde-3-phosphate dehydrogenase; catalyzes an important energy-yielding step in carbohydrate metabolism, the reversible oxidative |  |  |  |  |  |



### HNF4A Slide 2

| Туре                               | protein;                                                                                                                                                   | Show Provenance                                |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| Cellular<br>Components             | cytoplasm ( <u>GO:0005737</u> )                                                                                                                            | IntAct PubMed:14755292;  HPRD PubMed:12842090; |  |  |  |
|                                    | Nucleus ( <u>GO:0005634</u> )                                                                                                                              | HPRD PubMed:12842090;                          |  |  |  |
|                                    | Nucleolus ( <u>GO:0005730</u> )                                                                                                                            | PubMed:15635413;                               |  |  |  |
|                                    |                                                                                                                                                            | Hide Provenance                                |  |  |  |
| Molecular<br>Functions             | glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity<br>( <u>GO:0004365</u> ); Catalytic activity ( <u>GO:0003824</u> );<br>Show Provenance |                                                |  |  |  |
| Biological<br>Processes            | glycolysis ( <u>GO:0006096</u> ); Metabolism ( <u>GO:0008152</u> ); Energy pathways ( <u>GO:0006091</u> );  Show Provenance                                |                                                |  |  |  |
| Post-Translationa<br>Modifications | Acetylation [2];                                                                                                                                           | Show Provenance                                |  |  |  |



### Interaction Predictions

- Interactions can also be predicted based on several methods:
  - Structure-based prediction: two proteins with potentially interacting domains are likely to interact with each other
  - Homology-based prediction: two proteins are likely to interact with each other if their respective homologues interact
  - Various other factors affect "interactibitlity", in particular, expression profiles (both temporal and spatial).
- MiMI keeps track of both homologue and structural information
  - Currently, MiMI facilitates automatic interaction prediction based on homology.
  - In the future, predicted interactions will be subjected to verification based on expression profiles.



# Predicted Interactors Step 1

|                        | Browse           | Search        | Statistics      | Help   | Publication | About Us   |
|------------------------|------------------|---------------|-----------------|--------|-------------|------------|
| MIMI *                 | Keyword          | XQuery        | MQuery          | NaLIX  |             |            |
| COL10A1_               | HUMAN            |               |                 |        |             |            |
| Molecule ID            | 133              |               |                 |        |             |            |
| Organism ID            | 9606;            |               |                 |        | Show F      | Provenance |
| External<br>References | GI               | <u>553796</u> |                 |        |             |            |
| Description            | type X collagen; |               |                 |        | Show F      | Provenance |
| Interactions           |                  |               |                 |        |             |            |
|                        |                  |               | Predicted Inter | actors |             |            |



# Predicted Interactors Step 2





# Schema Rewriting and Simplificiation

- Biological schema are complex and non-uniform
- Transformation of data is a manual and error prone task
- Automated schema rewriting helps with
  - Understanding the schema
  - Transforming and integrating the data
- Future data integration into MiMI will be facilitated using methods we have developed



# **Pathways**





### Conclusions

- MiMI is available at
  - http://mimi.ctaalliance.org
- MiMI provides a new and useful tool to biologists that compliments and increases the value of current interaction databases:
  - Its deep integration feature provides a one-stop shop for biomedical scientists interested in comprehensive information about particular interactions or pathways.
  - Its provenance and probability tracking feature gives scientists more control over what information to trust.
  - Its flexible querying interfaces allows scientists to obtain information filtered and customized to their needs.

